

Development of a Robotic Driven Handheld Laparoscopic Instrument for Non-Invasive Intraoperative Detection of Small Endoluminal Digestive Tumors

Technical University of Cluj-Napoca, Romania

University of Medicine and Pharmacy Cluj-Napoca, Romania

Highlights

This paperwork introduces a

which aims achieving:

in the process of:

A prototype of the experimental developed instrument is shown within this presentation

Agenda

- Actual context
- Available surgical procedures & constraints
- Problem statement & proposed solution
- Framework methodology
- Developed instrument
- Conclusions

Context

together with

generated an

for identification of:

Available procedures & limitations

Open surgery

Laparoscopy

Traditional open surgery

MIS Laparoscopy - practices

endoscopist not required during surgery.
 needle gets contaminated, patient experienced abdominal pain.
 injected dye colors proximity tissues.

MESROB 2015, 4th international workshop on Medical and Service Robots, IRCCyN, 8-10 July 2015, Nantes, France

MIS Laparoscopy - practices

endoscopist and logistics are required at surgery time.

reduced working space due to insuflation of gas into the lumen

of stomach or colon resulting in a distention of the bowel.

Problem statement

Proposed solution

Methodology – design framework

Matindelogy - targefuntions (F)

TF1: High quality						
TF2: Affordable costs						
TF ₃ : High efficiency					++	++
TF4: High precision				-	++	++
TF5: Easy to handle by surgeon & robot			++	++	++	++
Optimization trend		1	^	1	Ψ	^
Requirements	Importance	TF ₅	TF4	TF ₃	TF2	TF1
MR1: sterilization by standard methods	10%		*		0	0
MR2: usage in laparoscopic and classic procedures	25%	*	*	0	0	
MR3: Identification of tumors extremely accurate	65%	•	•	•		•
Value weight [%]		24.0	25.9	23.6	8.1	18.4

Methodology – solving TF conflicts

TRIZ generic solutions

TRIZ generic solutions

TRIZ

Concretization

Method

Specific conflict

Specific solution

- Cost minimization vs. high quality
- Increasing efficiency vs. precision

- Change density or physical state, make immovable parts movable;
 Use composite materials, etc.
- 2. Replace mechanical means with sensory means, use electric, magnetic fields to interact with object, etc.

Instrument – design & prototype

<u>Instrument – sensing element</u>

Sensor used:

■ IFM IE5352

Sensor characteristics:

- Operating voltage: 10-30 VDC
- M8 body size.
- Normal open transistor output
- Non-flushable

Instrument – usage example

Instrument – usage & testing

a) handled by a surgeon

b) handled by a robotic system

Instrument – experiment

Within a bowel wall of 20 cm tumor marking clips were applied.

Each marking elements were applied with a Karl Stroz applier.

- Evaluate detection accuracy at different:
 - Motion curves
 - Orientations angle
 - Velocity

Instrument – validation

Conclusions

- A methodology for concurrent planning and design of surgery products considering both medical and performance requirements is introduced.
- Developed laparoscopic sensing instrument is adaptable to be used in both open and laparoscopic surgery.
- At this stage the instrument can be used by surgeon or by a guided industrial robot system.

Questions?

Acknowledgement: Support within the project Research Grant no. 1495/5/28.01.2014 offered by the University of Medicine and Pharmacy Cluj-Napoca for the study of "Non-invasive intraoperative detection of small endoluminal digestive tumors and their margins using proximity sensors" is acknowledged with gratitude

For collaboration you can contact us at:

Bogdan Mocan	bogdan.mocan@muri.utcluj.ro
Bintintan Vasile V.	vbintintan@gmail.com
Stelian Brad	stelian.brad@staff.utcluj.ro
Constantin Ciuce	constantinciuce@gmail.com
Mihaela Mocan	mihaela.mocan@gmail.com
Mircea Murar	mircea.murar@muri.utcluj.ro